G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2025.

(For those admitted in June 2021 and later)

PROGRAMME AND BRANCH: B.Sc., CHEMISTRY

SEM		CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE	
	I	PART-III	CORE	U21CH101	INORGANIC CHEMISTRY-I	

Date & Session: 03.11.2025/AN Time: 3 hours Maximum: 75 Marks

Course Outcome	Bloom's K-level	Q. No.		•	X 1 = 10 Marks) L Questions.	
CO1	K1	1.		of azimuthal quantum	number is 2, the	magnetic quantum
			number can hav	e values? b) +2, +1, 0, -1, -2	c) +1 0 -1	d) None
001	K2	2.	-		<u> </u>	•
CO1	KZ	۷.	a) Bohr	ween momentum and by Mendeleef	_	d) Lother Mayer
CO2	K1	3.	Aluminium has a	a diagonal relationship b) B	e) C	d) Si
CO2	K2	4.	Which of the foll	owing salts of element	s is not of transition	on elements?
			a) Ti, Zr, Hf	b) Fe, Co, Ni	c) Ga, In, Tl	d) Cu, Ag, Au
CO3	K1	5.	Which has the le	east ionisation energy?)	
			a) Li	b) Cs	c) C1	d) I
CO3	K2	6.	Which of the foll	owing has highest elec	ctronegativity?	
			a) B	b) N	c) F	d) Br
CO4	K1	7.	Which of the foll	owing is an example fo	or sp hybridisation	5
			a) BCl ₃	b) BeCl ₂	c) SnCl ₄	d) PCl ₅
CO4	K2	8.	Which of the foll	owing is paramagnetic	5.	
			a) F ₂	b) N ₂	c) O_2	d) Cl ₂
CO5	K1	9.	CH ₄ is.			
			a) Saline hydride		b) Covalent hydride	
			c) Polymeric hyd		d) Metallic hydride	
CO5	K2	10.		e following noble gases	s is obtained by rad	lioactive
			disintegration? a) Kr	b) Ar	c) Rn	d) Xe
	w _		,	,	,	,
Course	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B \text{ (5 X 5 = 25 Marks)}}{\text{Answer } \frac{\text{ALL}}{\text{Questions choosing either (a) or (b)}}$			
CO1	КЗ	11a.	Apply Bohr's postulates to explain how emission spectra of hydrogen are formed. (OR)			
CO1	КЗ	11b.		ale to explain the elect	•	of oxygen.
	_					

CO2	КЗ	12a.	Classify the elements into s, p, d, or f block (OR)
CO2	КЗ	12b.	Predict the trend in atomic radii across period 3 and explain using periodic law.
CO3	K4	13a.	Examine how lone pairs affect the molecular geometry of NH ₃ and H ₂ O compared to CH ₄ using VSEPR theory. (OR)
CO3	K4	13b.	Examine the relationship between lattice energy and ionic size/charge using Born-Lande equation factors
CO4	K4	14a.	Analyze the dual nature of hydrogen and justify its position with reference to both alkali metals and halogens. (OR)
CO4	K4	14b.	Analyze the diagonal relationship between lithium and magnesium using their physical and chemical similarities.
CO5	K5	15a.	Assess why p-block elements show a wider range of properties compared to s- and d-block elements. (OR)
CO5	K5	15b.	Evaluate the reasons why nitrogen (group 15) differs markedly from the rest of its group in bonding and oxidation states.

Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \underline{\text{ALL }} \text{Questions choosing either (a) or (b)}}$
CO1	К3	16a.	Use Schrödinger's wave equation to explain the concept of quantized energy levels in the hydrogen atom. (OR)
CO1	КЗ	16b.	How can Schrödinger's equation be used to determine the probability of finding an electron in a given region?
CO2	K4	17a.	Analyze the trend in ionization energy across a period and down a group with appropriate reasons. (OR)
CO2	K4	17b.	Analyze the role of electronegativity in determining the polarity of molecules such as H_2O and CO_2 .
CO3	K4	18a.	Using MOT, analyze why O_2 is paramagnetic while F_2 is not. Justify with molecular orbital diagrams. (OR)
CO3	K4	18b.	Compare and contrast VBT and MOT in terms of their explanation of bonding and molecular properties.
CO4	K5	19a.	Critically assess how hydration energy influences the lattice energy and solubility of ionic compounds in Group 1 and 2 elements. (OR)
CO4	K5	19b.	Evaluate the usefulness of hydrides in hydrogen storage technologies and suggest which type of hydride is most suitable and why.
CO5	K5	20a.	Compare interhalogen compounds with pure halogens in terms of reactivity, structure, and bond polarity, and evaluate their use as halogenating agents. (OR)
CO5	K5	20b.	Judge the significance of the polymeric structure of silicones in determining their thermal stability, water repellence, and flexibility.